
List processing in Scheme

Scheme vs. LISP
LISP suffered from a number of defects in its early versions, and then a number of
incompatible versions arose which fixed the defects in different ways. Moreover, the
language was extended to make it more practical as a general-purpose programming
language. It became large and unwieldy. Gerald Sussman, an others at MIT, decided to
make LISP revert to its origins as a simple implementation of the lambda calculus. This
language was called Scheme. It is an exceptionally pure version of LISP, with a lot of the
defects fixed. One early defect of LISP was its dynamic scoping. This was changed in
Scheme to static scoping, making its referential transparency complete.

List Processing
Without data structures, LISP is a just an arithmetic engine. The idea of using the list as a
general purpose data structure came about because a) it can serve to represent a wide
variety of purposes: trees, arrays, stacks etc., and b) it is simple to implement. As an
abstract data type, the list has four main operations:

• head – return the first item in the list
• tail – return the rest of the list except the first item
• cons – make a new list element and attach to an existing list
• null? – test whether a list if empty

The remaining question is how to represent lists themselves in the syntax of the language.
The answer that the LISP people came up with was to represent lists using the same
syntax as expressions. Thus (a b c) could either be the application of a function a to its
arguments b and c, or it could be a list of three symbols, a, b and c. Thus the syntax of a
list is:
 list = symbol | ‘(‘ (list)* ‘)’
This means that lists can be nested:
 ((a b) ((c)))
The internal representation of a list can be drawn in a box-and-arrow diagram. Each
element of a list is a cell of two parts. Each part is a pointer to a list. The leaves of the
tree are symbols, and the end of a list is a null pointer. The list above is drawn:

a b

c

This can be seen to be a binary tree as well.

List quoting
Since the list syntax is the same as the expression syntax, we need a way to distinguish
them. To stop evaluation of an expression as an application of a function, we quote the
list:
 ‘(a b c)
Is thus a list – eval will simply return it unchanged. Symbols can also be quoted:
 ‘a
Notice the single quote mark – since a list is always parenthesized, like an expression, we
only need one.
The quote mark is actually shorthand for the pseudo-function ‘quote’
 ‘(a b c) and (quote (a b c))
mean the same thing.

List Processing operations
The head of a list is just the first element of the list:
 (head ‘(a b c)) = a
 (head ‘((a b) ((c)))) = (a b)
 (head ‘a) = error
 (head ()) = error
The tail of a list is everything except the first element:
 (tail ‘(a b c)) = (b c)
 (tail ‘((a b) ((c)))) = (((c)))
 (tail ‘a) = error
 (tail ())= error
Notice the error conditions. A list is defined recursively; the base case (a symbol) will be
an invalid input for head and tail, as will the empty list, written ().
The cons operation creates a new cell:
 (cons ‘a ‘(b c)) = (a b c)
 (cons ‘(a b) ‘(((c)))) = ((a b) ((c)))
 (cons ‘a ()) = (a)

 (cons () ‘(a b c)) = (() a b c)

otice nd argument is a symbol, a ‘dotted pair’ is created which is

n empty list.

= #f

otice yntax, (), which does not need quoting, and the two special

A simple list processing function: length
length of a list:

)

th (tail L))))))

otice the defining form in Scheme: define which binds a name (here length) to a value.

c)) 0 (+ 1 (length (tail ‘(a b c)))))

) 0 (+ 1 (length (tail ‘(b c))))))

 (+ 1 (length (tail ‘(c)))))))

 (+ 1 (length (tail ())))))))

ach step comes directly from the function definition is obtained by

 (cons ‘a ‘ b) = (a . b)
N the last one. If the seco
a cell with two pointers both pointing to symbols.
The null? operation returns true if its argument is a
 (null? ()) = #t
 (null? ‘(a b c))
 (null? ‘a) = #f
N the empty list s
symbols #t and #f which are the representations of true and false.

Using these ideas we can write a function that returns the
 (define length
 (lambda (L)
 (if (null? L
 0
 (+ 1 (leng

N
The value of length is the function (lambda (L) …). A derivation of this function is:
 (length ‘(a b c))
 = (if (null? ‘(a b
 = (+ 1 (length ‘(b c)))
 == (+ 1 (if (null? ‘(b c)
 = (+ 1 (+ 1 (length ‘(c))))
 = (+ 1 (+ 1 (if (null? ‘(c)) 0
 = (+ 1 (+ 1 (+1 (length ()))))
 = (+ 1 (+ 1 (+ 1 (if (null? ()) 0
 = (+ 1 (+ 1 (+1 0)))
 = 3
The expansion in e
substituting the value of the argument in the body.

	List processing in Scheme
	Scheme vs. LISP
	List Processing
	List quoting
	List Processing operations
	A simple list processing function: length

